1. Introduction to Azure Cloud and Data Engineer profile
- Create Azure Subscription
- Azure Portal
- How did Data Engineer Profile Evolve
- Data Engineer Role and Responsibility
- Data Engineer Technologies
3. Implement relational data stores
- Azure SQL: Why?
- Azure Iaas vs Pass Database Offerings
- Azure SQL: PaaS Deployment Options
- Azure SQL Server Demo: Provision Single Database
- Azure SQL Server: Purchasing models and service tiers
- Azure Elastic Database
- Azure Elastic Database Demo: Provision
- Azure SQL Database: Security layers
- Azure SQL Database High Availability and Disaster Recovery options
- Traditional vs Modern Warehouse architecture
- What is Synapse Analytics Service [Updated: Dec 2020]
- Azure Synapse Analytics Demo: Formerly Azure SQL Data Warehouse
- Azure Synapse: MPP Architecture
- Azure Synapse: Storage and Sharding Patterns
- Azure Synapse: Data Distribution and Distributing Keys
- Azure Synapse: Data Types and Table Types
- Azure Synapse: Partitioning
- Azure Synapse: Best Practices for Fact and Dimension tables
- Demo: Analyze Data distribution before migration to Azure
- Azure Synapse: Different loading methods
- Azure Synapse: Loading with SSIS vs PolyBase
- Azure Synapse Demo: Loading with Polybase
- Azure Database vs Azure Datawarehouse (Synapse Data Pool)
5. Develop batch processing solutions ‘
- What is Data Factory
- Data Factory within Azure Eco system
- Provision Data Factory
- Data Factory – Components
- Data Factory – Pipeline and Activities
- Data Factory – Linked service and Datasets
- Data Factory – Integration Runtime
- Data Factory – Triggers
- Demo: Copy Data Activity through wizard
- Demo: Copy Data Activity using Author page
- What is Azure Databricks
- How to save Databricks demo Cost
- Demo: Provision Databricks, Clusters and workbook
- Demo: Mount Data Lake to Databricks DBFS
- Demo: Explore, Analyze, Clean, Transform and Load Data in Databricks
- Azure Databricks Clusters
- Azure Databricks Other Important Components
7. Monitor data storage
- intro to Azure Monitor service
- Demo: Azure Monitor Service
- Implementing Blob and Data Lake Storage monitoring
- Implement Azure Synapse Analytics monitoring
- Implement Cosmos DB monitoring
2. Implement non-relational data stores
- NoSQL Offerings by Microsoft Azure
- Azure Storage Introduction
- Demo Part 1 Provision Azure Storage Account
- Demo Part 2 Replication
- Demo Part 3 Continue Provisioning Storage account
- Azure Blob Storage
- Cosmos DB: Problem Statement – How Cosmos DB Evolved?
- Cosmos DB: Features
- Cosmos DB: Multi Model 5 APIs
- Cosmos DB: Provision Account
- Cosmos DB: Database Containers and items
- Cosmos DB: Throughput and request units
- Cosmos DB: Horizontal Scaling
- Cosmos DB: What is partitioning and partition key
- Cosmos DB: Dedicated vs Shared throughput
- Cosmos DB: Avoiding hot partition
- Cosmos DB: Single partition vs Cross partition
- Cosmos DB: Composite Key
- Cosmos DB: Partition key best practice
- Cosmos DB: Demo – Insert and query data
- Cosmos DB: Time to Live
- Cosmos DB: Globally Distribution
- Cosmos DB: Multi Master
- Cosmos DB: Manual vs Automatics Fail-over
- Cosmos DB: 5 consistent level
- Cosmos DB: CLI
- Cosmos DB: Pricing
- Cosmos DB: Security
- What is Data Lake?
- How Data Lake Gen 2 evolved
- Azure Blob Storage vs Azure Data Lake
- Azure Blob & Data Lake Security options
- High Availability vs Disaster Recovery
- Azure Storage – HA and DR Options
- Cosmos DB – HA and DR Options
4. Manage Data Security
- Implement Data masking
- Encrypt data at rest and in motion
6. Develop streaming solutions
- Introducing Azure Stream Analytics (configure input and output)
- Select the appropriate Windowing Functions
- Tumbling Window
- Hopping Window
- Sliding Window
- Session Window
- Demo: Implement Blob event processing by using Stream Analytics
8. Monitor data processing
- Monitor Data Factory Pipelines
- Monitor Data Factory – Metrics, Alerts, Diagnostic Settings
- Monitor Azure Databricks
- Monitor Stream Analytics
9. optimize of Azure data Solutions
- Troubleshoot Data Partitioning Bottlenecks
- Optimize Data Lake Storage
- Optimize Stream Analytics
- Optimize Azure Synapse Analytics
- Manage the Data Lifecycle